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APPENDIX R 
Geostatistics 

 
R-1.  Introduction.  Geostatistics is a method for analyzing spatially correlated data. It is used to 
identify spatial patterns and to interpolate values at unsampled locations. Sampling and mapping 
in the earth sciences are complicated by spatial and temporal patterns. The structure and intensity 
of such patterns often cannot be reliably predicted with deterministic models of fate and transport 
or with classical statistical methods applied to sample observations. Geostatistics is a way of in-
terpreting patterns from sample observations taking advantage of spatial correlation. In geo-
sciences, spatial correlation arises when samples taken close to one another are more likely to 
have similar values than samples taken far apart Clark (1979). 
 
 R-1.1.  Appendix O explains that covariance is a statistical measure of the association be-
tween two variables. If two variables are independent, the covariance is zero. For geostatistical 
analysis conducted on a regionalized variable, the auto-covariance between nearby samples is 
considered to be possibly not equal to zero. If the auto-covariance between two measurements 
taken close to each other is not zero, then the application of classical statistical methods may im-
part a substantial bias to the estimate. 
 
 R-1.2.  Classical statistical methods rely on data being independent over distance or time. 
Hence, in many environmental problems, the use of classical statistics is not entirely accurate, 
because variables are frequently spatially controlled. Geostatistics recognizes the spatial correla-
tion and provides methods for the following. 
 
 R-1.2.1.  Calculating predictions (such as the concentration of a metal at a specific location 
in soil). 
 
 R-1.2.2.  Quantifying the accuracy of the predictions. 
 
 R-1.2.3.  Selecting optimal locations to sample given an opportunity to collect more data. 
 
 R-1.3.  A geostatistician’s main task is to predict a regionalized variable (e.g., hydraulic 
gradient or metal concentration in soil) from a set of measurements. More detailed treatment of 
geostatistical methods can be found in Cressie (1993) and Goovaerts (1997). 
 
R-2.  Semivariogram.  The characteristic tool in geostatistics is the semivariogram to quantify 
and model the spatial correlation structure. A semivariogram is essentially a plot of the variance 
of groups of paired sample measurements as a function of the distance between samples. Typi-
cally, for the situation in which the variance depends only upon distance (and not direction), all 
possible sample pairs a fixed distance apart (h) are used to calculate a variance for h: 
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where xi and xj represent the value (i.e., concentration) at a pair of sample points i and j; the 
summation is over all possible pairs of points within a subgroup of the data that are a distance h 
apart (where i < j); and Nh denotes the total number of pairs that are h units part. For example, h 
is typically defined as increasing along constant intervals (h = {1d, 2d, 3d, …}, where d is a dis-
tance interval such as 5 feet.) In practice, a window of allowable distances is used so that many 
points will be included in each calculation of s2(h). For example, a group of samples used to cal-
culate s2 (3 feet) may have inter-point distances that are between 2 feet to 4 feet apart, rather than 
exactly 3 feet apart. This window is defined using a tolerance δ for h, so that all points within h ± 
δ of each other are grouped into the subset from which s2(h) is calculated. The user chooses this 
tolerance and other grouping parameters to define how the data will be grouped into subsets to 
calculate the s2(h) for each h. Different experimental variograms can be calculated for a given 
data set by varying the grouping parameters used to control the spatial geometry of the data sub-
sets at each distance h. 
 
 R-2.1.  With grouping parameters defined, computer software is used to do the intensive 
computations involved in calculating the variance s2(h) for different values of h. The quantity 
γ(h) = (1/2)s2(h) is plotted as a function of increasing distance, i.e., 1h, 2h, etc., and is referred to 
as the experimental or empirical semivariogram. Although the variogram is, by definition, twice 
the semivariogram, the terms variogram and semivariogram are often used interchangeably. 
 
 R-2.2.  After experimental semivariograms are reviewed, a continuous mathematical curve, 
called a model semivariogram, is then fit to the experimental semivariogram. Examples of model 
semivariograms are displayed in Figure R-1. The model semivariogram (Figure R-1a) is assumed 
to characterize the relationship of how variance in neighborhoods increases as the neighborhoods 
get larger. This relationship must be estimated for each site application. In practice, 20 or more 
sample locations are necessary to construct a useful empirical semivariogram, and often geologi-
cal site knowledge and statistical judgment are important considerations in estimating the model 
semivariogram. 
 
 R-2.3.  Figures R-1b and R-1c illustrate two model forms that have a sill, or maximum 
variance. A sill is the upper limit of any semivariogram model that levels off at large distances. 
In physical terms, the sill is the variance of concentrations at the site that are at a large enough 
distance from each other to be statistically independent. The distance at which spatial correlation 
becomes insignificant is called the range. Sample points separated by this distance or more are 
considered statistically independent and can be analyzed using a classic statistical approach. An-
other feature of a semivariogram illustrated in Figure R-1c is the nugget. In a model having a 
nugget, γ(h) does not approach zero as h approaches zero but rather a positive value that is gen-
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erally attributed to such things as measurement error for a single observation or small-scale vari-
ability. 
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Figure R-1.  Types of semivariograms. 
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R-3.  Kriging.  The geostatistical interpolation method of kriging uses the concepts and model 
established in a semivariogram data evaluation to develop both an unbiased estimate of the ex-
pected value at any specified location, as well as the uncertainty associated with this estimate. 
Typically, estimates are derived along a regularly spaced grid. With relatively dense grids, the 
estimate at each grid point is also the estimate of the mean value within the block centered on the 
grid point. 
 
 R-3.1.  The kriging estimate is a weighted mean of the neighboring samples, where each 
weight reflects the amount of unique (non-redundant) information contained about the location to 
be estimated that is in a given sample. The assignment of weights to each neighboring sample is 
based on the model semivariogram, and includes consideration of the inter-point distance be-
tween the sample and the location to be estimated, as well as the inter-point distances between 
this sample and its neighboring samples. Neighboring samples, if close together, are spatially 
correlated and, therefore, contain redundant (non-independent) information about the location to 
be estimated. Kriged estimates are more accurate than an un-weighted arithmetic mean; that is, 
they are unbiased (the bias from clustered samples is removed), and they have a lower variance.  
 
 R-3.2.  Some types of kriging that may be encountered are ordinary kriging, indicator or 
probability kriging, and block kriging. Ordinary kriging is used to predict the value of some vari-
able at a specific location. In block kriging, the technique allows the prediction of a variable 
mean within a block or area.  
 
 R-3.3.  The required assumptions for kriging are that the sample to be estimated lie within 
the neighborhood for which the model semivariogram has been estimated, that there be adequate 
empirical evidence (sample data) or scientific support (e.g., source history) for the appropriate-
ness of the model semivariogram, and that the neighborhood be homogeneous, with no distinct 
trends in the data values. For kriging, a trend is a deterministic gradient that can be modeled 
(such as an exponential decrease in deposition with distance from a point release). Such trends 
should be characterized and then subtracted from the regionalized variable being modeled. 
Kriging can then be run on the residuals to account for local patchiness and clustered sample 
data. Alternatively a release or plume of contamination can often be divided into strata in which 
the conditions are approximately homogenous (e.g., geological strata, differing source areas). 
The blocks of each neighborhood are then kriged using their corresponding semivariogram. 
 
 R-3.4.  Any estimation procedure has an associated estimation variance. The special prop-
erty of kriging is that it selects the set of weights that minimizes the estimation variance and pro-
duces the best linear unbiased estimator. 
 
 R-3.5.  The assessment of uncertainty in geostatistics is highly quantitative; interpolated 
concentrations are estimated on the basis of an underlying model of correlation and variability. 
As such, the estimates themselves are directly linked to estimates of uncertainty. A predicted 
value may be expressed as a quantity plus or minus some quantity representing the uncertainty 
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(X ± ε), or the predicted value may be associated with a probability (X, p = 0.9). Specific meth-
ods of estimating the uncertainty are beyond the scope of this document; they are usually calcu-
lated using computer software. 
 
 R-3.6.  Geostatistics can be used to evaluate and manage the uncertainty associated with 
remedial activities for a study area. Even with ample site characterization data (borings or wells), 
the boundaries of the treatment zone are imperfectly defined. Geostatistics allows us to evaluate 
the risk that the size, and, therefore, cost, of the remediation may be larger or smaller than ex-
pected. First, the site is characterized and adequate data are collected. Second, the data are trans-
formed by assigning a value of 1 or 0 (indicator values), depending on whether the value is 
above or below, respectively, a given cleanup value or other criterion. Third, the transformed 
data are used to construct a variogram. Fourth, the variogram is modeled as previously described. 
This model is then used to perform kriging with the indicator values. The kriging estimates re-
flect a probability that the concentration at the points of estimation exceed the cleanup value or 
other standard. These kriging estimates can be contoured to define areas or volumes of material 
that have a certain likelihood of exceeding some cleanup value. The contour value is essentially 
the probability of exceedance. Last, the size of the area defined by different probabilities of ex-
ceedance can be determined and, using a unit cost or similar approach, a cost-versus-risk curve 
can be developed.  
 
 R-3.7.  This can be used in programming money for the project, as a basis for negotiating 
cleanup levels with regulators, or to help determine if the cost and time of additional characteri-
zation work will be offset by less risk during construction. Alternatively, rather than transform-
ing the data to ones and zeros, the actual values can be kriged, and the kriging variances can be 
used to determine prediction intervals for each estimated value. In the vicinity of the point esti-
mate, these prediction intervals can be used to define the spread of potential values expected 
within a given probability. This assumes the data are normally distributed or have been trans-
formed to be normally distributed. 
 
R-4.  Software for Geostatistics.  There are a number of software applications to assist in geo-
statistical calculations. Two older applications developed by the U.S. Environmental Protection 
Agency (EPA) are GeoPack and Geo-EAS (EPA 600/4-88/033). 
 
 R-4.1.  GeoPack conducts analysis of variability for one or more random functions. 
GeoPack includes basic statistics, such as mean, median, variance, standard deviation, skew, and 
kurtosis. The package also does regressions, distribution testing, and percentile calculations. 
Sample semivariograms, cross-semivariograms, or semivariograms for combined random func-
tions for a two-dimensional, spatially dependent random function can also be determined. 
GeoPack includes ordinary kriging and co-kriging estimators in two dimensions, along with their 
associated estimation variance and the conditional probability that the value is greater than a 
user-specified cutoff level. Graphical tools include linear or logarithmic line plots, contour plots, 
and block (pixel) diagrams. 
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 R-4.2.  Geo-EAS was also developed by the EPA and is a collection of interactive software 
tools for doing two-dimensional geostatistical analyses of spatially distributed data. Programs are 
provided for data management, data transformations, univariate statistics, semivariogram analy-
sis, cross-validation, kriging, contour mapping, post plots, and line-and-scatter graphs. The ap-
plication is DOS-based. 
 
 R-4.3.  A publicly available package of geostatistical software that is more comprehensive 
than these EPA packages is GSLIB, available at http://www.gslib.com. The DOS-executable 
freeware may be downloaded from this site. Alternatively, the software source code and a sup-
porting textbook may also be purchased at the site for a nominal fee.  
 
 R-4.5.  Commercial software for Windows, Sun, or Macintosh systems include WinGSLIB, 
Environmental Visualization System, and Groundwater Modeling System (GMS), which is cur-
rently available to all USACE, U.S. Department of Defense, EPA, and U.S. Department of En-
ergy personnel. 
 
R-5.  Case Study: Geostatistical Analysis of Remediation by In Situ Ozonation. 
 
 R-5.1.  Introduction.  An application of geostatistics to environmental remediation will be 
explored in this case study. Three-dimensional kriging was used to support the Remedial Investi-
gation/Feasibility Study, Remedial Action Plan, Confirmation Sampling, and Remedial Action 
Report (site closure) for a former manufactured gas plant (MGP) located in Long Beach, Cali-
fornia. The former MGP operated from approximately 1901 to 1913 and produced gas from coal 
and crude oil feedstocks. The project was conducted pursuant to an agreement with the Califor-
nia Environmental Protection Agency Department of Toxic Substances Control under their Ex-
pedited Remedial Action Program. In-situ ozonation was used to lower levels of polycyclic 
aromatic hydrocarbons (PAHs) to meet the selected risk-based cleanup levels for this site. The 
kriging results played an important role in several estimation and decision processes, including:  
 
 R-5.1.1.  Contouring the original distribution of PAH. 
 
 R-5.1.2.  Defining the footprint and depths for the treatment zone. 
 
 R-5.1.3.  Supporting decisions regarding placement for the ozone-injection well system.  
 
 R-5.1.4.  Selecting quarterly monitoring locations for soil samples during the treatment 
process as well as for post-treatment confirmation samples. 
 
 R-5.1.5.  Contouring the final post-treatment distribution. 
 
 R-5.1.6.  Estimating the site-wide exposure concentration used for risk assessment and site 
closure.  
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 R-5.2.  Post-Treatment Modeling.  Quarterly monitoring results indicated substantial reduc-
tions in PAH levels early in the treatment, which began in 1998. However, within 2 years, moni-
toring indicated that the reductions had reached an asymptote, reflecting the diminishing return 
of continued ozonation and the recalcitrant nature of the residual PAHs. In 2000, confirmation 
samples were taken from random locations within the defined treatment zone. Kriging was then 
used to model the post-treatment spatial distribution of PAHs and compare it to the pre-treatment 
distribution (Figure R-2). Kriging uncertainty was estimated and used to determine whether 
cleanup goals had been met.  
 
 

         
 

a. Pre-ozonation. b. Post-ozonation. 
 

Figure R-2.  Comparison of krige-interpolated benzo-
(a)pyrene concentrations before and after treatment by 
in situ ozonation. 

 
 R-5.3.  Reporting.  The reporting of the kriging analysis was included in the Remedial Ac-
tion Report as an appendix with an organization and level of detail consistent with guidelines 
given in Standard Guide for the Contents of Geostatistical Site Investigation Report (ASTM 
D5549-94e1). To enhance the practical value of this case study, the following parts of the ASTM 
outline are used below: software, data sources, exploratory analysis (and conceptualization), spa-
tial continuity analysis, estimation, and uncertainty.  
 
 R-5.4.  Software.  The analysis was conducted using the three-dimensional kriging utilities 
of the GMS software mentioned in Paragraph R-4.  
 
 R-5.5.  Data Sources.  The variable of interest was benzo(a)pyrene equivalents (a weighted 
sum of carcinogenic PAHs in each sample). The first kriging analysis (pre-remediation) was 
conducted on sample data dispersed over approximately 75 soil borings primarily from the re-
medial investigation (RI) program that was completed in 1997. In contrast, the post-remediation 
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kriging was conducted on a composite data set that consisted of 1997 RI samples that were out-
side the treatment area, together with the latest samples available for the treatment area taken in 
2002. Thus, the post-remediation data set reflected the assumption that soil concentrations in the 
untreated areas were stable over time (reasonable for the PAHs involved) and, therefore, well 
represented by older data, while soil concentrations in the treatment zone were expected to 
change over time so that older samples were not included in the kriging analysis.  
 
 R-5.6.  Exploratory Analysis and Site Conceptualization.  The recommended Exploratory 
Analysis section in the ASTM guidelines is expanded here to be a conceptual discussion, deemed 
important for all sites, that considers all relevant qualitative and quantitative information about 
the site. The integration of these different types of information is crucial for explicitly identifying 
a conceptual model of the contamination distribution that will guide a number of assumptions 
and decisions throughout the analysis. Beyond the analytical sample results, such information in-
cludes topography, stratigraphy, observations made in boring logs, site history, and other qualita-
tive and semi-quantitative information. For the MGP site, all examples from the above list were 
applied in some way during formulation of the geostatistical analysis. The following description 
of some of the qualitative information about the site is included before the transition into the ex-
ploratory data analysis. 
 
 R-5.6.1.  Well-established site history provided engineering process information, as well as 
maps of potential source structures, that could be used to compare with the posted analytical re-
sults. An additional factor at the site is that its current condition includes an engineered soil levee 
along the Los Angeles River as well as soil fill set around large concrete supports for a bridge 
and on-ramp built across the site in 1953–1963 (subsequent to decommissioning of the MGP). 
Thus, the topography is quite varied and includes imported soil brought in to cover large parts of 
the site. Topography, native or fill, definitely influenced soil volumes and, therefore, had to be 
incorporated explicitly into the kriging estimation. Furthermore, the three-dimensional visualiza-
tion of the topography and sample data (Figure R-3) indicated that spatial correlation occurred 
along a relatively level elevation rather than following the highs and lows of the present surface 
topography. (An approximate two-fold vertical exaggeration is used to aid the visualization of 
data points within a boring.) This is consistent with the expected pattern produced by an origi-
nally flat plant site. Because the subsequent mixing and earth movement are somewhat uncertain, 
the large volume of soil covering the former plant was sampled, along with the native soil, as 
part of the RI and was included in the site-wide model and calculations.  
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Figure R-3.  Surface topography with benzo(a)pyrene concentrations and a kriged 
isovolume. 

 
 R-5.6.2.  The additional exploration of the analytical data, in the form of a histogram and 
descriptive statistics, indicated a high degree of skewness with suggestions of a composite of two 
different populations: one with low concentrations (i.e., “background”) that were found in the 
outlying areas, and the other with moderate-to-relatively high concentrations that still presuma-
bly reflected some varying amount of impact from the historical contamination (even after treat-
ment). Samples in the outlying areas were more sparse than in the central area, but still provided 
ample evidence to confirm the central positioning of the impacted soil in and around former 
MGP structures. Therefore, this potentially distinct population of low values was considered im-
portant to keep in the data set so that it would help define the outward extent of the residual con-
tamination. 
  
 R-5.6.3.  Including the low concentrations together with the more central data had the fol-
lowing implications. 
 
 R-5.6.3.1.  Site Mean.  The site-wide estimate of exposure concentration would reflect a 
site mean that included, in accordance with the defined site boundaries, both background and 
impacted volumes of soil. The site-wide mean to be calculated based on the kriging analysis 
would have contributions from both parts of the site in a manner that was “volume-weighted.” 
Given that any future redevelopment of the site would require the removal of the bridge support 
structures and intensive mixing of soil across the entire site, this site-wide mean was considered 
a realistic assumption for the conservative residential risk scenario. 
 
 R-5.6.3.2.  Spatial Pattern or Lateral Extent.  The lower concentrations confirm site his-
torical information regarding the “edges” of the impacted zone. Given this confirmation, the 
sparse outlying data can and should be supplemented with “soft data” to fill in areas of low data 
density and create a well-controlled boundary condition for the edges of the site. Such soft data, 
termed the “extended data set,” were added to the kriging for the estimation phase conducted af-
ter development of the variogram. 
 
 R-5.7.  Spatial Continuity Analysis.  It is reasonable to estimate soil concentrations across 
the site based on the underlying kriging assumption of spatial continuity. The fate and transport 
processes, involved in both the contamination and the ozone dispersion and effect, are presuma-
bly spatially continuous on some scale. Although soil structure and sample concentrations are 
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notoriously variable or even discrete on a small scale, the resolution requirements implied by 
both risk assessment and remediation allow a broader focus. The view from risk assessment is 
one of exposure accumulated over time and space (a spatial average), and the view from reme-
diation might be described as akin to the scoop size of a backhoe or some other scale useful for 
feasibility and cost estimation of the specific treatment. This larger scale of variability is more 
forgiving in the sense that an interpolation of the mean concentration in a cubic-yard block of 
soil has a lower uncertainty than an interpolation of any particular shovel-full of soil in the same 
block.  
 
 R-5.7.1.  Therefore, the search for evidence and range of spatial continuity need not be a 
matter of finely tuned research for many sites although the level of rigor must be consistent with 
the site conceptualization. For example, one might argue that the outlying data, if they are truly 
background, may be a different population altogether than the central data, with different conti-
nuity ranges to be found by analyzing the two sets separately. On the other hand, there is no 
bright line around the site to delineate these two populations spatially (at least “a priori,” before 
the spatial analysis was done). More realistically, there is likely to be a gradient of soil impacted 
by some level of contamination and also some level of remediation, such that the net impact, or 
probability of impact, on the soil decreases with distance from the central area and individual in-
jection wells. The spatial range of correlation that is defined for the kriging variogram should 
ideally be appropriate for this transition zone, as well as for the obvious central or outlying areas 
of the site. In other words, practicality points to the simplest assumptions that will “work.” 
 
 R-5.7.2.  Spatial continuity was investigated on the entire post-remediation data set using a 
general relative variogram, which automatically adjusts for the proportional effect commonly 
found in contaminant concentration data and lognormal tending data in general. The variances 
calculated for a relative variogram were modified by dividing the group variances by the square 
of the local mean, which can be calculated in several ways. This improved the structure of the 
experimental variogram and, specifically for the case study data, allowed the modeler to observe 
lower relative variances (stronger correlations) at inter-point distances of about 5 to 10 feet (in 
the laterally direction), moderate variances at about 30 to 40 feet, and highest variances reaching 
a plateau at about 50 to 60 feet (see Figure R-4a).   
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a. Directional horizontal variograms. b. Horizontal and vertical variograms. 
 

Figure R-4.  Two sets of experimental variograms used to define the krige variogram 
model. 

 
 R-5.7.3.  Horizontal anisotropy was reviewed by limiting vertical and angular grouping pa-
rameters (depends on software package) to create different directional “horizontal variograms.” 
No horizontal anisotropy was present. However, the comparison between the horizontal 
variograms and vertical variograms, created by limiting horizontal grouping parameters, indi-
cated that the vertical range of spatial correlation was approximately one-fourth that of the hori-
zontal range. A spherical model variogram with vertical anisotropy was selected, with a 
horizontal range of 49 feet and a vertical range of 12.4 feet (Figure R-4b).  
 
 R-5.8.  Estimation.  A concentration estimate was developed for every cell center of a 
three-dimensional grid with cell dimensions 6 by 6 by 3 feet. Cell dimensions were chosen to be 
consistent with earlier modeling work, but also were considered to provide an adequate balance 
between the resolution needs of risk and remediation resolution and the increased run-time and 
overall unwieldiness of denser grids. The three-dimensional contour map could be compared to 
the pre-remediation maps in plan view by layers, or by cross sections or rendered iso-volumes in 
GMS. The site-wide mean was then simply a matter of calculating the arithmetic average of all 
cell mid-points that were defined as “soil” (as opposed to “above ground”).   
 
 R-5.9.  Uncertainty.  Kriging standard error estimates are automatically produced for each 
cell at the time the concentration estimate is assigned. They reflect uncertainty in a particular cell 
estimate and cannot be used directly to estimate uncertainty for the site-wide mean, which is the 
standard error term required for a 95% upper confidence limit (95% UCL), i.e., the exposure 
concentration. The standard error for the site-wide mean was conservatively estimated by using 
the kriging error resulting when the variogram model was run on a new grid consisting of one 
large three-dimensional cell encompassing the entire site. The intuitive definition of this error 
term is that it represents the uncertainty implied by using the available 233 spatially correlated 
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sample points to estimate the mean concentration of the entire block of soil containing the 233 
correlated samples. As the site boundaries and especially the topography result in an irregularly 
shaped zone of soil within this large rectangular block, the “block type” of uncertainty results in 
an overestimate for the actual soil subzone within the block. This is because the block uncer-
tainty reflects large regions of “air” that are not properly distinguished from soil, and these re-
gions have no sample data and are relatively far from the nearest sample datum. This method 
was conservative but was considered reasonable for use in the risk assessment. Detailed discus-
sions of the many uncertainty approaches for kriging can be found in Meyers (1997), which fo-
cuses on environmental contamination, and other geostatistical texts (e.g., Goovaerts, 1997). 
Thus, the 95% UCL on the mean was calculated as 
 
 95% UCL = UE + 1.645 KSE 
 
where 
 UE = unbiased estimate of the mean (obtained from the high resolution model)  
 KSE = kriging standard error (conservative estimate) 
 1.645 = the 95th percentile of the standard normal distribution 
 
R-6.  Conclusion. 
 
 R-6.1.  Although several conservative analysis assumptions were built into the model and 
uncertainty formulation, the site-wide volume-weighted exposure concentration (95% UCL) was 
reduced by 37 to 58% compared to that calculated from the most commonly used non-spatial 
formulas identified in numerous risk assessment guidances (e.g., t-based, Land, bootstrap). The 
reduction in the exposure concentration came from the more rigorous use of spatial correlation 
and soil volume when kriging rather than the classical assumption that all sample points were 
identically distributed, i.e., without spatial correlation. Thus, the lower kriged exposure concen-
tration was important in determining the attainment of risk-based cleanup goals. 
 
 R-6.2.  The kriged model contours of the post-treatment spatial distribution allowed the 
visual comparison of the estimated pre- and post-remediation distributions, and were instrumen-
tal in concluding the effectiveness of in situ ozonation for this site.  
 


